One New A-type Proanthocyanidin Trimer from *Lindera aggregata* (Sims) Kosterm.

Chao Feng ZHANG¹, Qi Shi SUN², Zheng Tao WANG^{1*}, Masao HATTORI³

¹College of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210038
²College of Traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016
³Research Institute for Wakan-yaku, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan

Abstract: One new A – type proanthocyanidin trimer, lindetannin trimer, was isolated from the stems of *Lindera aggregata* (Sims) Kosterm.. Its structure was elucidated by spectral and chemical methods.

Keywords: Lindera aggregata, lauraceae, tannin, lindetannin trimer.

In our previous paper^{1,2}, we have reported some constituents from the leaves of *Lindera aggregata* (Sims) Kosterm.. Further investigation on the stems of this plant led to the isolation of one new proanthocyanidin trimer: lindetannin trimer 1. In this letter, we described its structural elucidation.

Figure 1 The structure of compound 1

Lindetannin trimer **1** (**Figure 1**) was obtained as freeze-dried powder, $\left[\alpha\right]_{D}^{2}$ -102.3 (*c* 1.21, MeOH). IR (v, KBr, cm⁻¹): 3245, 1610, 1512, 1450, 1290, 1078. UV (MeOH) λ max: 280 nm. Positive to the ferric chloride (dark green) and the anisaldehyde-sulfuric acid (orange-red) reagents. Compound **1** showed a molecular formula of $C_{45}H_{36}O_{18}$ from the high resolution negative FAB-MS (m/z [M-1]⁻ 863.1834,

_

^{*} E-mail: herbs@mailbox.cpu.edu.cn

calcd 863.1822) and ^{1}H and ^{13}C NMR spectra (**Table 1**), which was assumed to be a trimeric proanthocyanidin. The ^{1}H NMR spectrum exhibited the presence of an A-type unit from AB coupling system at δ_{H} 3.64 and 3.72 (each, d, J=3.4Hz). This was also supported from its ^{13}C NMR spectrum. B-type chemical shifts at δ_{C} 28.8, 67.2 and 100.2 ppm were characteristic chemical shifts of the C-4, C-3 and the quaternary C-2 in the pyran ring directly involved in the A-type interflavanoid banding, as earlier outlined 3,4 .

HPLC analysis showed **1** to be predominantly a single compound. By comparing with authentic compound epicatechin - $(4\beta - 8, 2\beta - O - 7)$ - epicatechin - $(4\beta - 8)$ - epicatechin⁵ (cinnamtannin B₁) on TLC, which was also isolated from the same plant, compound **1** was different from cinnamtannin B₁ and gave characteristic signals: 3.04 (dd, 1H, J = 16.1, 9.3 Hz), 2.44 (dd, 1H, J = 16.1, 10.0 Hz) in the high field of ¹H-NMR spectrum. This indicated that a catechin terminal unit, which was also supported by acid - catalyzed degradation (with benzylmercaptane / acetic acid in EtOH).

In 13 C NMR spectra of **1**, the signals of upper and middle units were in good agreement with those of aesculitannin B⁵ (**Table 1**), except for the terminal unit signals [$\delta_{\rm H}$ 3.92 (d, 1H, J=9.3Hz, H-2I), 3.77 (m, 1H, H-3I), 2.44 (d, 1H, J=10.0, 16.1Hz, H-4Ia) and 3.04 (d, 1H, J=9.3, 16.1Hz, H-4Ib); $\delta_{\rm C}$ 82.8 (C-2I), 69.6 (C-3I) and 30.8 (C-4I)], which indicated a epicatechin upper unit and a catechin middle unit supported from $J_{2,3}$ (9.3Hz, F-ring, (**Figure 2**)). Besides, the H- 3, 4 *trans*-relative configuration of F ring was also confirmed by $J_{3,4}$ (9.3Hz). All conclusions mentioned were demonstrated by 1 H- 1 H COSY, HMQC and HMBC spectra of **1** (**Figure 2**). Upon these consideration, compound **1** was confirmed as epicatechin - (4 β -8, 2 β -O-7) - *ent*-catechin - (4 β -8) - catechin.

Figure 2 Main correlations in HMBC spectrum of compound 1

Table 1 NMR spectral data of 1, cinnamtannin B_1 and aesculitannin B in $CD_3OD(\delta ppm)$

Ring	No.	Cinnamtannin B ₁		1	Aesculitannin B
		13C	¹³ C	¹ H	13C
Upper unit					
C	2	99.9	100.2		100.11
	3	67.1	67.2	3.64(d, 3.4)	67.05
	4	28.8	28.8	3.72(d, 3.4)	28.91
A	5	156.8	156.4		156.49
	6	98.5	97.9	5.81(d, 2.2)	97.86
	7	157.8	157.9	(, , , ,	157.95
	8	96.6	96.4	5.99(d, 2.2)	96.48
	9	154.2	154.0	2155 (2, 212)	153.93
	10	104.9	104.1		104.06
В	1'	132.5	132.3		132.24
	2'	115.7	115.7	7.09(d, 2.2)	115.68
	3'	145.5	145-147	7.07(d, 2.2)	145.21
	4 <i>'</i>	146.6	145-147		145.50
	5'	116.1	116.1	6.84(d, 8.2)	115.98
	6'	119.9	119.9	6.97(dd, 2.2, 8.2)	119.82
Middle unit	U	119.9	119.9	0.97 (dd, 2.2, 6.2)	119.02
F	2	78.9	942	4.46(d, 9.3)	94.49
	2 3		84.3		84.48
		72.6	74.3	4.34(t, 9.3)	73.87
D	4	38.3	38.9	4.43(d, 9.3)	39.04
	5	155.8	155.5	5.05()	155.37
	6	96.1	97.2	5.85(s)	97.21
	7	151.1	151.2		151.20
	8	106.4	106.6		106.86
	9	151.8	156.2		152.21
	10	106.7	108.9		108.93
E	1′	131.8	131.2		131.06
	2'	116.7	115.7	6.92(d,1.7)	116.52
	3'	145.9	145-147		146.10
	4'	146.3	145-147		146.68
	5′	115.7	115.7	6.66(d, 8.1)	116.34
	6'	121.4	120.8	6.76(d, 8.1)	121.14
Lower unit					
I	2	80.3	82.8	3.92(d, 9.3)	79.61
	3	67.5	69.6	3.77(m)	67.61
	4	29.8	30.8	2.44(d, 10.0, 16.1) 3.04(d, 9.3, 16.1)	30.07
G	5	155.5	155.4		156.19
	6	96.5	96.4	6.08(s)	96.57
	7	155.8	152.3	,,	156.16
	8	108.9	108.7		108.55
	9	155.8	154.9		155.26
	10	100.1	102.4		100.97
Н	1'	133.2	132.3		132.92
	2'	115.5	116.4	7.05(brs)	115.27
	3'	145.3	145-147	, 102 (015)	145.87
	4'	145.8	145-147		146.65
	5'	116.0	116.4	6.84(d, 8.3)	115.68
	6 <i>'</i>	119.4	120.8	6.97(dd, 8.3, 2.2)	119.26

Treatment of compound ${\bf 1}$ with benzylmercaptane / acetic acid yielded catechin and

epicatechin - $(4\beta$ - 8) – benzylthioether, this reaction indicated that the upper unit was linked to middle unit via C-4 β / C-8 or C-4 β / C-6 interflavanoid bond. The specific linkage was established by examination of HMBC spectrum of 1 (Figure 2). The absolute configuration of 1 was also supported by the positive Cotton effect in the characteristic wavelength region (200 - 230 nm) of the CD spectrum^{5, 6}.

Consequently, compound 1 was determined structurally as epicatechin (4 β - 8, 2 β - O - 7) - *ent* - catechin - (4 β - 8) - catechin.

References

- 1. C. F. Zhang, Q.S. Sun, Y. Y. Zhao, Z. T. Wang, Chin. J. of Med. Chem., 2001, 11 (5), 274.
- C. F. Zhang, Q. S. Sun Z. T. Wang, G. X. Chou, J. of Chin. Material Medica, 2001, 26 (11), 765.
- 3. G. I. Nonaka, S. Morimoto, J. E. Kinjo, et al., Chem. Pharm. Bull., 1987, 35 (1),149.
- A. M. Balde, L. A. Pieters, H. Gergely, H. Kolodziej, M. Claeys, A. J. vlietinck, *Phytochemistry*, 1991, 30 (2), 337.
- 5. K. Kamiya, C. Watanabe, H. Endang, M. Umar, et al., Chem. Pharm. Bull., 2001, 49 (5), 551.
- 6. J. J. Botha, D. A. Yang, D. Ferreira, J. Chem. Soc. Perkin trans. I, 1981 (5), 1213.

Received 28 October, 2002